Пиноцитоз характерные особенности

Пиноцитоз характерные особенности

Многие полагают, что клетка представляет собой низший уровень организации живой материи. Однако на самом деле клетка — это сложный организм, развитие которого из примитивной формы, впервые появившейся на Земле и напоминавшей нынешний вирус, заняло сотни миллиардов лет. На рисунке ниже приведена схема, отражающая относительные размеры: (1) мельчайшего из известных вирусов; (2) крупного вируса; (3) риккетсии; (4) бактерии; (5) ядросодержащей клетки. На рисунке видно, что диаметр клетки в 10 , а объем — в 10 раз больше размера мельчайшего вируса.
Особенности строения и функции клеток по сложности во много раз превышают таковые у вирусов.

Основа жизнедеятельности вируса заключена в молекуле нуклеиновой кислоты, покрытой белковой оболочкой. Нуклеиновая кислота, как и в клетках млекопитающих, представлена либо ДНК, либо РНК, которые при определенных условиях способны самокопироваться. Таким образом, вирус, как и клетки человека, воспроизводится от поколения к поколению, поддерживая свой «род».

В результате эволюции в состав организма наряду с нуклеиновыми кислотами и простыми белками вошли другие вещества, а различные отделы вируса начали выполнять специализированные функции. Вокруг вируса сформировалась мембрана, появился жидкий матрикс. Вещества, сформированные в матриксе, стали выполнять особые функции, появились ферменты, способные катализировать ряд химических реакций, которые в итоге и определяют жизнедеятельность организма.

На следующих ступенях развития, в частности на стадиях риккетсий и бактерий, появляются внутриклеточные органеллы, с помощью которых отдельные функции выполняются более эффективно, чем с помощью веществ, диффузно распределенных в матриксе.

Наконец, в ядросодержащей клетке возникают более сложные органеллы, важнейшим из которых является само ядро. Наличие ядра отличает данный тип клеток от более низких форм жизни; ядро осуществляет контроль над всеми функциями клетки и так организует процесс деления, что последующее поколение клеток оказывается почти идентичным клетке-предшественнику.

Сравнительные размеры доядерных структур с клеткой человеческого организма.

Эндоцитоз — захват веществ клеткой. Живая, растущая и делящаяся клетка должна получать питательные и другие вещества из окружающей жидкости. Большая часть веществ проникает через мембрану путем диффузии и активного транспорта. Под диффузией подразумевается простой неупорядоченный перенос молекул вещества через мембрану, которые проникают в клетку чаще через поры, а жирорастворимые вещества — непосредственно через липидный бислой.
Активный транспорт — это перенос веществ через толщу мембраны с помощью белка-переносчика. Механизмы активного транспорта крайне важны для деятельности клетки.

Частицы большого размера попадают в клетку путем процесса, называемого эндоцитозом. Главные виды эндоцитоза — пиноцитоз и фагоцитоз. Пиноцитозом называют захват и перенос в цитоплазму небольших пузырьков с внеклеточной жидкостью и микрочастицами. Фагоцитоз обеспечивает захват крупных элементов, включая бактерии, целые клетки или фрагменты поврежденных тканей.

Пиноцитоз. Пиноцитоз происходит постоянно, а в некоторых клетках — весьма активно. Так, в макрофагах этот процесс происходит настолько интенсивно, что за 1 мин около 3% общей площади мембраны преобразуется в пузырьки. Однако размеры пузырьков крайне малы — всего 100-200 нм в диаметре, поэтому их можно увидеть только при электронной микроскопии.

Пиноцитоз — единственный способ, благодаря которому большинство макромолекул могут проникать в клетку. Интенсивность пиноцитоза возрастает, когда такие молекулы соприкасаются с мембраной.

Как правило, белки присоединяются к поверхностным рецепторам мембраны, которые высокоспецифичны к абсорбируемым видам белков. Рецепторы концентрируются в основном в области мельчайших углублений на наружной поверхности мембраны, которые называют окаймленными ямками. Дно ямок со стороны цитоплазмы выстлано сетевидной конструкцией из фибриллярного белка клатрина, который, как и другие сократительные белки, содержит нити актина и миозина. Присоединение белковой молекулы к рецептору меняет форму мембраны в области ямки благодаря сократительным белкам: ее края смыкаются, мембрана все больше погружается в цитоплазму, захватывая молекулы белка вместе с небольшим количеством внеклеточной жидкости. Сразу после замыкания краев происходит отрыв пузырька от наружной мембраны клетки и формирование пиноцитозной вакуоли внутри цитоплазмы.

Пока не ясно, почему происходит деформация мембраны, необходимая для образования пузырьков. Известно, что этот процесс энергозависимый, т.е. требует макроэргического вещества АТФ, роль которого обсуждается далее. Присутствие ионов кальция во внеклеточной жидкости, по всей вероятности, также необходимо для взаимодействия с лежащими в области дна окаймленных ямок с сократительными филаментами, которые создают усилие, необходимое для отщепления пузырьков от наружной мембраны клетки.

Научная электронная библиотека

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

Читайте также:  До скольки лет можно делать процедуру ЭКО

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

транспортировка питательных веществ и утилизация продуктов обмена клетки;

буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

поддержание тургора (упругость) клетки;

все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

Читайте также:  Анализ мочи на белок Бенс-Джонса норма, показания

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Пиноцитоз характерные особенности

Капилл я ры (от лат. capillaris — волосной) кровеносные, мельчайшие сосуды, пронизывающие все ткани человека и животных и образующие сети (рис. 1, I) между артериолами, приносящими кровь к тканям, и венулами, отводящими кровь от тканей. Через стенку К. происходит обмен газов и др. веществ между кровью и прилежащими тканями (см. Капиллярное кровообращение).

Читайте также:  Ушиб глаза - статьи о глазных болезнях

Впервые К. были описаны итал. натуралистом М. Мальпиги (1661) как недостающее звено между венозными и артериальными сосудами, существование которого предсказывал У. Гарвей. Диаметр К. обычно варьирует от 2,5 до 30 мкм. Широкие К. называют также синусоидами. Стенка К. состоит из 3 слоев (рис. 1, II); внутреннего — эндотелиального, среднего — базального и наружного — адвентициального. Эндотелиальный слой состоит из плоских клеток многоугольной формы, меняющейся в зависимости от их состояния. Для эндотелиальных клеток характерно наличие в цитоплазме большого количества микропиноцитозных (см. Пиноцитоз) везикул диаметром 300—1500 , которые перемещаются между краем клетки, обращенным к просвету К., и краем, обращенным к ткани, и переносят порции веществ, необходимых для осуществления обмена между кровью и тканями. Между эндотелиальными клетками имеются щелевидные пространства шириной 100—150 и два типа межклеточных соединений: без зон облитерации и с зонами облитерации. Базальный слой (шириной 200—1500 ) представлен клеточным компонентом и неклеточным, состоящим из сплетённых между собой фибрилл, погруженных в богатое мукополисахаридами гомогенное вещество. Клеточный компонент — перициты, или клетки Руже, — полностью окутан неклеточным компонентом. Адвентициальный слой состоит из фибробластов, гистиоцитов и др. клеточных и волокнистых структур, а также межуточного вещества соединительной ткани; он переходит в окружающую К. соединительную ткань, образующую т. н. перикапиллярную зону.

Ультраструктура стенки артериального К. отличается от таковой венозного К. величиной просвета (как правило, артериальный — до 7 мкм, венозный — 7—12 мкм); ориентацией ядер эндотелиальных клеток (в артериальном — длинная ось ядра направлена по ходу К., в венозном — перпендикулярно); эндотелиальный слой более гладкий и мощный в артериальном К., истонченный, с множеством отростков цитоплазмы — в венозном К. Набухание ядер и цитоплазмы эндотелиальных клеток в артериальном К. приводит обычно к закрытию его просвета, а в клетках венозного К. только суживает его. Проницаемость стенки К. связана прежде всего с проницаемостью эндотелия; определённую роль в проницаемости стенки К. играет и неклеточный компонент базального слоя. Существует мнение, что перицит — сократительная клетка, способная, подобно мышечной, активно изменять просвет К. Согласно др. точке зрения, перицит — специальная клетка, участвующая в двигательной иннервации К.: в ответ на поступающий из центральной нервной системы нервный импульс, переданный через перицит к эндотелиальным клеткам, последние отвечают молниеносным накоплением (набухание) или выделением (спадение) жидкости, что вызывает изменение просвета К. Ультраструктура стенки К. в различных органах имеет свою специфику. Например, в мышечных органах К. имеют широкий эндотелиальный и узкий базальный слои; в К. почек базальный слой широкий, а эндотелиальные клетки истончены и местами имеют закрытые мембраной отверстия — фенестры; в лёгких и эндотелиальный, и базальный слои К. тонкие; в К. костного мозга базальный слой отсутствует, в К. печени и селезёнки — имеет поры и т.д. Особенности ультраструктуры эндотелиального и базального слоев К. в различных органах лежат в основе классификации К. Одно из основных биологических свойств капиллярной стенки — её реактивность: своевременное и адекватное изменение деятельности всех компонентов стенки К. в ответ на воздействие внешней среды. Изменение реактивности стенки К. может лежать в основе патогенеза ряда заболеваний.

К. лимфатические (рис. 2, I и II), в отличие от кровеносных, имеют только эндотелиальный слой, расположенный на окружающей соединительные ткани и прикрепленный к её коллагеновым фибриллам особыми «стропными» нитями (филаментами). Лимфатические К. пронизывают почти все органы и ткани животных и человека, кроме головного мозга, паренхимы селезёнки, лимфатические узлов, хрящей, склеры, хрусталика глаза и некоторых др. Форма и контуры лимфатической сети разнообразны и определяются строением и функцией органа и свойствами соединительной ткани, в которой расположены К. Лимфатические К. выполняют дренажную функцию, способствуют оттоку из тканей коллоидных растворов белковых веществ, не проникающих в кровеносные К., удалению из организма инородных частиц и бактерий. Стенка лимфатических К. проницаема для мелких и крупных молекул, проходящих как через эндотелиальные клетки с помощью микро-пиноцитозных везикул, так и через межклеточные щели, более широкие, чем у кровеносных К., и не замкнутые зонами облитерации. Лимфа из межклеточных щелей собирается в лимфатические К., которые, соединяясь, образуют лимфатические сосуды.

Лит.: Жданов Д. А., Общая анатомия и физиология лимфатической системы, М., 1952; Шахламов В. А., Капилляры, М., 1971; Крог А., Анатомия и физиология капилляров, пер. с. нем., М., 1927.

В. А. Шахламов.

Рис. 2. Схема сети лимфатических капилляров в тканях (вверху) и поперечного среза лимфатического капилляра (внизу): Пр — просвет капилляра; Я — ядро эндотелиальной клетки; Э — цитоплазма эндотелиальной клетки; М — митохондрия; КФ — коллагеновые фибриллы; СФ — стропные филаменты; Л — лимфоцит.

Рис. 1. Схема сети кровеносных капилляров в тканях (I) и поперечного среза кровеносного капилляра (II): Пр — просвет капилляра; Эр — эритроцит; Я — ядро эндотелиальной клетки; Э — цитоплазма эндотелиальной клетки; М — митохондрия; ПВ — микропиноцитозные везикулы; БС — базальный слой кровеносного капилляра; ЯП — ядро перицита; П — цитоплазма перицита; Т — терминаль двигательного нерва; А — адвентициальный слой; КФ — коллагеновые фибриллы; Фб — фибробласт.

Ссылка на основную публикацию
Пиаскледин 300, купить в Москве от 1097 руб, цены в аптеках
Пиаскледин 300 - инструкция по применению Регистрационный номер Торговое название: Лекарственная форма: Состав Действующие вещества: авокадо масла неомыляемые соединения 100...
Перепелиные яйца польза и вред для женщин, основные свойства
Перепелиные яйца: польза и вред, как принимать В свой рацион перепелиные яйца люди включают всё чаще. Это объясняется тем, что...
Перерыв в приеме противозачаточных таблеток
Мидиана® Инструкция русский қазақша Торговое название Международное непатентованное название Лекарственная форма Таблетки, покрытые пленочной оболочкой, 3 мг/0.03 мг Состав Одна...
Пивные Дрожжи Для Набора Веса Как Принимать
12 лучших пивных дрожжей Характеристика в рейтинге Пивные дрожжи – это ценный питательный продукт, содержащий натуральный белок, все известные аминокислоты...
Adblock detector