Что показывает ЭЭГ головного мозга, расшифровка энцефалограммы

Расшифровка показателей электроэнцефалограммы (ЭЭГ) головного мозга

С помощью метода электроэнцефалографии (аббревиатура ЭЭГ), наряду с компьютерной или магнитно-резонансной томографией (КТ, МРТ), изучается деятельность головного мозга, состояние его анатомических структур. Процедуре отведена огромная роль в выявлении различных аномалий методом изучения электрической активности мозга.

ЭЭГ – автоматическая запись электрической активности нейронов структур головного мозга, выполняемая с помощью электродов на специальной бумаге. Электроды крепятся к различным участкам головы и регистрируют деятельность мозга. Таким образом осуществляется запись ЭЭГ в виде фоновой кривой функциональности структур мыслительного центра у человека любого возраста.

Выполняется диагностическая процедура при различных поражениях центральной нервной системы, например, дизартрии, нейроинфекции, энцефалитах, менингитах. Результаты позволяют оценить в динамике патологии и уточнить конкретное место повреждения.

ЭЭГ проводится в соответствии со стандартным протоколом, отслеживающим активность в состоянии сна и бодрствования, с проведением специальных тестов на реакцию активации.

Взрослым пациентам диагностика осуществляется в неврологических клиниках, отделениях городских и районных больниц, психиатрическом диспансере. Чтобы быть уверенным в анализе, желательно обратиться к опытному специалисту, работающему в отделении неврологии.

Детям до 14 лет ЭЭГ проводят исключительно в специализированных клиниках врачи педиатры. Психиатрические больницы не делают процедуру маленьким детям.

Что показывают результаты ЭЭГ

Электроэнцефалограмма показывает функциональное состояние структур головного мозга при умственной, физической нагрузке, во время сна и бодрствования. Это абсолютно безопасный и простой метод, безболезненный, не требующий серьезного вмешательства.

Сегодня ЭЭГ широко применяется в практике врачей-неврологов при диагностике сосудистых, дегенеративных, воспалительных поражений головного мозга, эпилепсии. Также метод позволяет определить расположение опухолей, травматических повреждений, кист.

ЭЭГ с воздействием звука или света на пациента помогает выразить истинные нарушения зрения и слуха от истерических. Метод применяется для динамического наблюдения за больными в реанимационных палатах, в состоянии комы.

Норма и нарушения у детей

  1. ЭЭГ детям до 1 года проводят в присутствии матери. Ребенка оставляют в звуко- и светоизолированной комнате, где его кладут на кушетку. Диагностика занимает около 20 минут.
  2. Малышу смачивают голову водой или гелем, а затем надевают шапочку, под которой размещены электроды. На уши размещают два неактивных электрода.
  3. Специальными зажимами элементы соединяются с проводами, подходящими к энцефалографу. Благодаря небольшой силе тока процедура полностью безопасна даже для младенцев.
  4. Прежде чем начать мониторинг, голову ребёнка располагают ровно, чтобы не было наклона вперед. Это может вызвать артефакты и исказить результаты.
  5. Младенцам ЭЭГ делают во время сна после кормления. Важно дать насытиться мальчику или девочке непосредственно перед процедурой, чтобы он погрузился в сон. Смесь дают прямо в больнице после проведения общего медосмотра.
  6. Малышам до 3 лет энцефалограмму снимают только в состоянии сна. Дети старшего возраста могут бодрствовать. Чтобы ребёнок был спокойным, дают игрушку или книжку.

Важной частью диагностики являются пробы с открыванием и закрыванием глаз, гипервентиляцией (глубокое и редкое дыхание) при ЭЭГ, сжатием и разжиманием пальцев, что позволяет дезорганизовать ритмику. Все тесты проводятся в виде игры.

После получения атласа ЭЭГ врачи диагностируют воспаление оболочек и структур мозга, скрытую эпилепсию, опухоли, дисфункции, стресс, переутомление.

Степень задержки физического, психического, умственного, речевого развития осуществляется с помощью фотостимуляции (мигание лампочки при закрытых глазах).

Значения ЭЭГ у взрослых

Взрослым процедура проводится с соблюдением следующих условий:

  • держать во время манипуляции голову неподвижной, исключить любые раздражающие факторы;
  • не принимать перед диагностикой успокаивающие и прочие препараты, воздействующие на работу полушарий (Нервиплекс-Н).

Перед манипуляцией врач проводит с пациентом беседу, настраивая его на положительный лад, успокаивает и вселяет оптимизм. Далее на голову крепят специальные электроды, подключенные к аппарату, они считывают показания.

Исследование длится всего несколько минут, совершенно безболезненно.

При условии соблюдения вышеописанных правил с помощью ЭЭГ определяются даже незначительные изменения биоэлектрической активности головного мозга, свидетельствующие о наличии опухолей или начале патологий.

Ритмы электроэнцефалограммы

Электроэнцефалограмма головного мозга показывает регулярные ритмы определенного типа. Их синхронность обеспечивается работой таламуса, отвечающего за функциональность всех структур центральной нервной системы.

На ЭЭГ присутствуют альфа-, бета-, дельта, тетра-ритмы. Они имеют разные характеристики и показывают определенные степени активности мозга.

Альфа – ритм

Частота данного ритма варьирует в диапазоне 8-14 Гц (у детей с 9-10 лет и взрослых). Проявляется почти у каждого здорового человека. Отсутствие альфа ритма говорит о нарушении симметрии полушарий.

Самая высокая амплитуда свойственна в спокойном состоянии, когда человек находится в темном помещении с закрытыми глазами. При мыслительной или зрительной активности частично блокируется.

Частота в диапазоне 8-14 Гц говорит об отсутствии патологий. О нарушениях свидетельствуют следующие показатели:

  • alpha активность регистрируется в лобной доле;
  • asymmetry межполушарий превышает 35%;
  • нарушена синусоидальность волн;
  • наблюдается частотный разброс;
  • полиморфный низкоамплитудный график менее 25 мкВ или высокий (более 95 мкВ).

Нарушения альфа-ритма свидетельствуют о вероятной асимметричности полушарий (asymmetry) вследствие патологических образований (инфаркт, инсульт). Высокая частота говорит о различных повреждениях головного мозга или черепно-мозговой травме.

У ребенка отклонения альфа-волн от норм являются признаками задержки психического развития. При слабоумии альфа-активность может отсутствовать.


В норме полиморфная активность в пределах 25 − 95 мкВ.

Бета активность

Beta-ритм наблюдается в пограничном диапазоне 13-30 Гц и меняется при активном состоянии пациента. При нормальных показателях выражен в лобной доле, имеет амплитуду 3-5 мкВ.

Высокие колебания дают основания диагностировать сотрясение мозга, появление коротких веретен – энцефалит и развивающийся воспалительный процесс.

У детей патологический бета-ритм проявляется при индексе 15-16 Гц и амплитуде 40-50 мкВ. Это сигнализирует о высокой вероятности отставания в развитии. Доминировать бета-активность может из-за приема различных медикаментов.

Тета-ритм и дельта-ритм

Дельта-волны проявляются в состоянии глубокого сна и при коме. Регистрируются на участках коры головного мозга, граничащих с опухолью. Редко наблюдаются у детей 4-6 лет.

Тета-ритмы варьируются в диапазоне 4-8 Гц, продуцируются гиппокампом и выявляются в состоянии сна. При постоянном увеличении амплитудности (свыше 45 мкВ) говорят о нарушении функций головного мозга.

Если тета-активность увеличивается во всех отделах, можно утверждать о тяжелых патологиях ЦНС. Большие колебания сигнализируют о наличии опухоли. Высокие показатели тета- и дельта-волн в затылочной области говорят о детской заторможенности и задержке в развитии, а также указывают на нарушение кровообращения.

БЭА — Биоэлектрическая активность мозга

Результаты ЭЭГ можно синхронизировать в комплексный алгоритм – БЭА. В норме биоэлектрическая активность мозга должна быть синхронной, ритмической, без очагов пароксизмов. В итоге специалист указывает, какие именно нарушения выявлены и на основании этого проводится заключение ЭЭГ.

Различные изменения биоэлектрической активности имеют интерпретацию ЭЭГ:

  • относительно-ритмичная БЭА – может свидетельствовать о наличии мигреней и головных болей;
  • диффузная активность – вариант нормы при условии отсутствия прочих отклонений. В сочетании с патологическими генерализациями и пароксизмами свидетельствует об эпилепсии или склонности к судорогам;
  • сниженная БЭА ‒ может сигнализировать о депрессии.

Остальные показатели в заключениях

Как научиться самостоятельно интерпретировать экспертные заключения? Расшифровка показателей ЭЭГ представлены в таблице:

Показатель Описание
Дисфункция средних структур мозга Умеренное нарушение активности нейронов, характерное для здоровых людей. Сигнализирует о дисфункциях после стресса и пр. Требует симптоматического лечения.
Межполушарная асимметрия Функциональное нарушение, не всегда свидетельствующее о патологии. Необходимо организовать дополнительное обследование у невролога.
Диффузная дезорганизация альфа-ритма Дезорганизованный тип активирует диэнцефально-стволовые структуры мозга. Вариант нормы при условии отсутствия жалоб у пациента.
Очаг патологической активности Повышение активности исследуемого участка, сигнализирующее о начале эпилепсии или расположенность к судорогам.
Ирритация структур мозга Связана с нарушением кровообращения различной этиологии (травма, повышенное внутричерепное давление, атеросклероз и др.).
Пароксизмы Говорят о снижении торможения и усилении возбуждения, часто сопровождаются мигренями и головными болями. Возможна склонность к эпилепсии.
Снижение порога судорожной активности Косвенный признак расположенности к судорогам. Также об этом говорит пароксизмальная активность головного мозга, усиленная синхронизация, патологическая активность срединных структур, изменение электрических потенциалов.
Эпилептиформная активность Эпилептическая активность и повышенная предрасположенность к судорогам.
Повышенный тонус синхронизирующих структур и умеренная дизритмия Не относятся к тяжелым нарушениям и патологиям. Требуют симптоматического лечения.
Признаки нейрофизиологической незрелости У детей говорят о задержке психомоторного развития, физиологии, депривации.
Резидуально-органические поражения с усилением дезорганизации на фоне тестов, пароксизмы во всех частях мозга Эти плохие признаки сопровождают тяжелые головные боли, синдром нехватки внимания и гиперактивности у ребенка, повышенное внутричерепное давление.
Нарушение активности мозга Встречается после травм, проявляется потерей сознания и головокружениями.
Органические изменения структур у детей Следствие инфекций, например, цитомегаловирус или токсоплазмоз, либо кислородного голодания в процессе родов. Требуют комплексной диагностики и терапии.
Изменения регуляторного характера Фиксируются при гипертонии.
Наличие активных разрядов в каких-либо отделах В ответ на физические нагрузки развивается нарушение зрения, слуха, потеря сознания. Необходимо ограничивать нагрузки. При опухолях появляются медленноволновая тета- и дельта-активность.
Десинхронный тип, гиперсинхронный ритм, плоская кривая ЭЭГ Плоский вариант характерен для цереброваскулярных заболеваний. Степень нарушений зависит того, как сильно будет ритм гиперсинхронизировать или десинхронизировать.
Замедление альфа-ритма Может сопровождать болезнь Паркинсона, Альцгеймера, послеинфарктное слабоумие, группы заболеваний, при которых мозг может демиелинизировать.
Читайте также:  Комаровский объяснил, как правильно давать детям коровье молоко - Здоровье 24

Консультации специалистов в области медицины онлайн помогают людям понять, как могут расшифровываться те или иные клинически значимые показатели.

Причины нарушений

Электрические импульсы обеспечивают быструю передачу сигналов между нейронами головного мозга. Нарушение проводниковой функции отражается на состоянии здоровья. Все изменения фиксируются на биоэлектрической активности при проведении ЭЭГ.

Существует несколько причин нарушений БЭА:

  • травмы и сотрясения – интенсивность изменений зависит от тяжести. Умеренные диффузные изменения сопровождаются невыраженным дискомфортом и требуют симптоматической терапии. При тяжелых травмах характерны сильные повреждения проводимости импульсов;
  • воспаления с вовлечением вещества головного мозга и спинномозговой жидкости. Нарушения БЭА наблюдаются после перенесенного менингита или энцефалита;
  • поражение сосудов атеросклерозом. На начальной стадии нарушения умеренные. По мере отмирания тканей из-за нехватки кровоснабжения ухудшение нейронной проводимости прогрессирует;
  • облучение, интоксикация. При радиологическом поражении возникают общие нарушения БЭА. Признаки токсического отравления необратимы, требуют лечения и влияют на способности больного выполнять повседневные задачи;
  • сопутствующие нарушения. Зачастую связаны с тяжелыми повреждениями гипоталамуса и гипофиза.

ЭЭГ помогает выявить природу вариативности БЭА и назначить грамотное лечение, помогающее активировать биопотенциал.

Пароксизмальная активность

Это регистрируемый показатель, свидетельствующий о резком росте амплитуды волны ЭЭГ, с обозначенным очагом возникновения. Считается, что это явление связано только с эпилепсией. На самом деле пароксизм характерен для разных патологий, в том числе приобретенного слабоумия, невроза и пр.

У детей пароксизмы могут быть вариантом нормы, если не наблюдается патологических изменений в структурах мозга.

При пароксизмальной активности нарушается в основном альфа-ритм. Билатерально-синхронные вспышки и колебания проявляются в длине и частоте каждой волны в состоянии покоя, сна, бодрствования, тревоги, умственной деятельности.

Пароксизмы выглядят так: преобладают заостренные вспышки, которые чередуются с медленными волнами, а при усилении активности возникают так называемые острые волны (спайк) – множество пиков, идущих один за другим.

Пароксизм при ЭЭГ требует дополнительного обследования у терапевта, невролога, психотерапевта, проведения миограммы и прочих диагностических процедур. Лечение заключается в устранении причин и последствий.

При травмах головы устраняют повреждение, восстанавливают кровообращение и проводят симптоматическую терапию.При эпилепсии ищут, что стало ее причиной (опухоль или пр.). Если болезнь врожденная, сводят к минимуму количество припадков, болевой синдром и негативное влияние на психику.

Если пароксизмы являются следствием проблем с давлением, проводится лечение сердечнососудистой системы.

Дизритмия фоновой активности

Означает нерегулярность частот электрических мозговых процессов. Это возникает вследствие следующих причин:

  1. Эпилепсия различной этиологии, эссенциальная гипертензия. Наблюдается асимметрия в обоих полушариях с нерегулярной частотой и амплитудой.
  2. Гипертония ‒ ритм может уменьшиться.
  3. Олигофрения – восходящая активность альфа-волн.
  4. Опухоль или киста. Наблюдается асимметрия между левым и правым полушарием до 30%.
  5. Нарушение кровообращения. Снижается частота и активность в зависимости от выраженности патологии.

Для оценки дизритмии показанием к ЭЭГ являются такие заболевания, как вегетососудистая дистония, возрастное или врожденное слабоумие, черепно-мозговые травмы. Также процедура проводится при повышенном давлении, тошноте, рвоте у человека.

Ирритативные изменения на ээг

Данная форма нарушений преимущественно наблюдается при опухолях с кистой. Характеризуется общемозговыми изменениями ЭЭГ в виде диффузно-корковой ритмики с преобладанием бета-колебаний.

Также ирритативные изменений могут возникнуть из-за таких патологий, как:

  • менингит;
  • энцефалит;
  • атеросклероз.

Что такое дезорганизация корковой ритмики

Проявляются, как следствие травм головы и сотрясений, которые способны спровоцировать серьезные проблемы. В этих случаях энцефалограмма показывает изменения, происходящие в головном мозге и подкорке.

Самочувствие пациента зависит от наличия осложнений и их серьезности. Когда доминирует недостаточно организованная корковая ритмика в легкой форме — это не влияет на самочувствие пациента, хотя может вызывать некоторый дискомфорт.

Возрастная динамика ритмов электрической активности мозга. Уровень тревожности и ЭЭГ-индексы 1970

Кустубаева А.М.
кандидат биологических наук, доцент Казахского национального университета
e-mail: almkust@gmail.com

Изучение возрастных закономерностей электрической активности коры головного мозга является необходимым условием как для дальнейшего развития теоретического понимания формирования функций мозга и психических процессов, так и для практического обеспечения нормального физиологического и психического развития ребенка в различных социальных условиях. Рассмотрение процесса развития коры головного мозга с позиций системогенеза позволяет осуществить анализ, сравнение и сопоставление психических и физиологических особенностей ее созревания в непрерывности поведенческого континуума (Александров, Сергиенко, 2003, с. 98). Согласно закономерностям системогенеза, по мере гетерохронного созревания отдельных структур функциональной системы при взаимодействии со все более сложной окружающей средой наблюдается переход от менее дифференцированного к более высокодифференцированному поведению (Швырков, 1995; Александров, 1995, 2009; Чуприкова, 1990; Сергиенко, 2009 и др.).

Известно, что развитие ЭЭГ-ритмов мозга в филогенезе предполагает постепенный переход доминирующего ритма мозга от низкочастотного к более высокочастотному. Например, у рептилий доминирует дельта-ритм, у низших млекопитающих – тета-ритм (MacLean,1990). Г. Г. Князев (2004) рассматривает дельта-, тета- и альфа-ритмы как иерархическую систему, находящуюся в соотношении с тремя эволюционными системами мозга – стволовой, лимбической и корково-таламической. Согласно данной теории, дельта-ритм связан с витальными и биологическими мотивациями, альфа-ритм отражает процессы «восприятия и распознавания паттернов окружающей среды», а тета-ритм – эмоциональные процессы (Князев, 2004, с. 572). С точки зрения Ю. И. Александрова, эмоции характеризуют эволюционно ранние, «старые» системы мозга с низкой дифференциацией функций (Александров, 1995, 2006), которые, вероятно, связаны с преобладанием более медленных ритмов в ЭЭГ. Усложнение дифференциации среды способствует развитию «новых» высокодифференцированных систем, что сопровождается увеличением более быстрых волн электрической активности по мере взросления человека; подобная динамика наблюдается также и в онтогенезе.

Онтогенетическй аспект развития ЭЭГ-ритмов мозга затрагивался многими исследователями – первоначально в виде описания линейных, а затем и нелинейных изменений медленных волн в сторону уменьшения и быстрых волн в сторону увеличения с возрастом (Matousek, Petersen, 1973; John et al., 1980; Matthis et al., 1980; Gasser et al., 1988 и др.). Данную закономерность с позиций системного подхода можно представить как уменьшение коэффициента, выражающего отношение «числа менее дифференцированных систем к числу более дифференцированных систем» по мере усложнения дифференциации взаимоотношений с внешней средой (Александров, 2006, с. 316). Многие исследователи выделяют учащение ведущего альфа-ритма как один из основных критериев в детерминации степени морфофункционального созревания мозга детей (Дубровинская, 1985; Фарбер, 1969; Фарбер, Алферова, 1972; Благосклонова, Новикова, 1994; Бияшева, Швецова, 1981 и др). Интенсивность системогенеза различается как в пространственном, так и временном диапазоне. Наиболее интенсивно возрастные изменения наблюдаются в первые недели после рождения (Anokhin et al., 1996). Согласно анатомическим исследованиям, созревание происходит в непрерывной динамике переходов прогрессионных и регрессионных процессов и максимальная интенсивность наблюдается в течение возрастного периода до двух лет. Лонгитюдные исследования с использованием МРТ выявили увеличение белого вещества по всему мозгу и локальные изменения с U-образной динамикой серого вещества с различным темпом в различных структурах (Lenroot, Giedd, 2006). Максимальная интенсивность увеличения синаптической плотности в зрительных зонах наблюдалась к четырем месяцам, а в префронтальной коре – только к четырем годам. Процессы уменьшения медленных ритмов и повышения быстрых ритмов происходят быстрее в теменно-затылочных, чем в передних, областях мозга (Taylor, Baldeweg, 2002; Werkle-Bergner et al., 2006), в том же направлении изменяется траектория максимальной пластичности мозга (Chugani et al., 1987).

Степень функционального созревания мозга соответствует степени развития психических процессов. Многолетние исследования созревания активности мозга позволили определить ЭЭГ-критерии функциональной зрелости регуляторных структур от I до IV степени (Фарбер, 1969; Фарбер, Безруких, 2001; Мачинская и др., 1997 и др.). Результаты других исследований показали, что функциональная зрелость коррелирует с успеваемостью детей, функциями внимания (Мачинская и др., 1997; Мачинская, Крупская, 2008). М. ВеркльБернер с соавторами (Werkle-Bergner et al., 2006), используя методы МРТ и ЭЭГ, осуществили попытку рассмотрения процесса функционального созревания мозга и изменения функций памяти с точки зрения анатомических и физиологических возрастных трансформаций. Согласно когнитивным моделям, новые созревающие структуры требуют вовлечения более ранних структур для отображения идей и понятий более высокого уровня (Shrager, Johnson, 1996). Необходимо отметить, что результаты представленных выше исследований согласуются с основными положениями системного подхода: «новые», более высокодифференцированные структуры постоянно требуют вовлечения «старых», так как они не взаимозаменяются, а «наслаиваются» (Швырков, 1995; Александров, 1995, 2006, 2009).

Читайте также:  Неровный пульс причины, симптомы, что делать, как лечить

Безусловно, окружающая среда влияет на формирование электрической активности мозга в процессе индивидуального развития. Так, дети, растущие в условиях повышенного риска заболеваний, обнаруживают более медленное снижение тета-ритма и выраженную вариабельность различных ЭЭГ-ритмов по сравнению с детьми, растущими в более благоприятных условиях (Harmony et al., 1988). Дети, находящиеся в условиях семейной депривации, характеризуются иной динамикой развития понимания эмоций, нежели дети, воспитывающиеся в семьях (Сергиенко, 2006). В некоторых исследованиях отмечена определенная специфика в развитии интеллектуальной и аффективно-потребностной сфер у детей, находящихся в условиях материнской депривации, которая проявляется в обедненности эмоционально-мотивационной сферы, ориентированности на внешний контроль, в неприятии себя, недоверии к людям, деструктивной агрессии (Прихожан, Толстых, 2005; Прихожан, 2000), что, с нашей точки зрения, и должно находить свое отражение как в показателях уровня функционального созревания активности головного мозга, так и в показателях уровня тревожности детей.

Существуют исследования, подтверждающие тот факт, что тревожность является предвестником многих психических и соматических заболеваний, девиантного и аддиктивного поведения, что определяет необходимость ее диагностики на ранних этапах до появления первых симптомов острого психосоматического расстройства или отклонений в поведении (Siciliani et al., 1975; Smit et al., 2007; Blackhart et al., 2006; Павленко и др., 2009 и др.). Авторы предлагают использование ЭЭГ-показателей как хороших индикаторов тревожности. В частности, ими высказывается мнение о том, что более высокая ЭЭГ-активность правой фронтальной зоны связана с симптомами депрессии, тревожности и повышенной эмоциональности (Blackhart et al., 2006). Тревожность ассоциируется также с эффектом связывания (coupling) между медленными и быстрыми волнами ЭЭГ (Knyazev et al., 2005 и др.). В некоторых исследованиях отмечают более высокий уровень дельта- и бета- активности и низкий уровень альфа-активности у высокотревожных лиц (Павленко и др., 2009; Черный, 2007 и др.).

Таким образом, целью данного исследования явилось выявление различий в показателях возрастной динамики активности коры головного мозга (показателях спектральной мощности основных ритмов ЭЭГ) и уровня тревожности между двумя выборками испытуемых – детьми, проживающими в детском доме, и детьми контрольной группы.

Гипотезы исследования:

1. Динамика развития ЭЭГ-ритмов у обследуемых детей соответствует общей закономерности уменьшения спектральной мощности низкочастотных ритмов и увеличения высокочастотных ритмов в онтогенезе.

2. Возрастная динамика изменений ЭЭГ-ритмов различается у испытуемых двух основных выборок: у детей, воспитывающихся в условиях семьи, и воспитанников детского дома.

3. Уровень тревожности в группе Д выше по сравнению с уровнем тревожности детей контрольной группы, что находит свое отражение в ЭЭГ-показателях.

Испытуемые. В исследовании приняли участие 115 детей, распределенных по следующим возрастным группам: I – от 6 до 7 лет (20 чел.), II – от 11 до 12 лет (40 чел.), III – от 14–15 лет (35 чел.), IV – от 17 до 18 лет (20 чел.). Из них 40 детей проживали в детском доме (группы Д: II – 20 чел. и III – 20 чел.), 55 человек обучались в средней школе-гимназии, проживали в семъях (группы К: I –20 чел., II – 20 чел., III –15 чел.). В IV возрастную группу (К: IV–20 чел.) вошли студенты 1-го курса Казахского национального университета имени аль Фараби (г. Алматы). Группы были уравновешены по гендерному критерию (50 % девочек и 50 % мальчиков, за исключением III контрольной группы, в которую вошли 7 мальчиков и 8 девочек).

Методика

Тревожность. Уровень тревожности определялся с помощью теста Ч. Д. Спилбергера, адаптированного Ю.Л. Ханиным (1976), до проведения ЭЭГ-исследования.

ЭЭГ-исследование. ЭЭГ-запись производилась монополярно с восьми симметричных фронтальных (F3, F4), центральных (C3, C4), теменных (P3, P4) и затылочных (O1, O2) областей мозга по системе 10–20% с индифферентным ушным электродом при помощи компьютеризированного электроэнцефалографа фирмы «Medicor 8S» (Венгрия), оснащенного программным обеспечением ЭЭГлаб (Вильдавский, 1996). Обследуемые находились в затемненном помещении, изолированном от шума и электромагнитных волн.

Процедура записи ЭЭГ включала ситуации: 1. Спокойное бодрствование с закрытыми глазами (2 мин); 2. Спокойное бодрствование с открытыми глазами (2 мин.); 3–7. Фотостимуляции 4, 6, 8, 10, 12 Гц (ФС, последовательно по 30 сек); 8. Гипервентиляция (ГВ, 2 мин); 9. Восстановление после ГВ (2 мин); 10. Задержка дыхания (ЗД, 30 сек);

11. Восстановление после ЗД (1 мин). В данной работе представлены только показатели спектральной мощности фоновых значений при закрытых и открытых глазах, гипервентиляции и восстановления после гипервентиляции.

Анализ ЭЭГ. Спектрально-когерентный анализ на основании быстрого преобразования Фурье данных производился с помощью программы В. Вильдавского после удаления отрезков ЭЭГ, содержащих артефакты, для следующих ритмов ЭЭГ: дельта – 0,2–3,8 Гц; тета – 4–7,8 Гц; альфа1 – 8–10,8 Гц; альфа2 – 11–13,8 Гц; бета1 – 14–19,8 Гц; бета2 – 20–29,8 Гц; гамма1 – 30–34,8 Гц; гамма2 – 35–45 Гц. Индивидуальные показатели спектральной плотности мощности (СПМ) и функции когерентности (КоГ) ритмов ЭЭГ по каждой изучаемой ситуации переносились в файл SPSS15, где производилась дальнейшая статистическая обработка. Все данные проходили процедуру нормализации Y=logХ. Альфа-мода в возрастных группах определялась с помощью графиков в программном обеспечении Вильдавского.

Статистические гипотезы:

Гипотеза 1. Однофакторный дисперсионный анализ (one way ANOVA) на основании post hoc tests с использованием критерия LSD и Bonferroni суммарных и локальных показателей спектральной мощности различных ритмов и ЭЭГ-индексов (Тета/Альфа2, Альфа/ Дельта, индексы ГВ и восстановления после ГВ, индекс подавления альфа-ритма при открывании глаз) предполагает получение статистически достоверных различий между возрастными группами.

Нуль-гипотеза: достоверные различия суммарной и локальной спектральной мощности ритмов и ЭЭГ-индексов между возрастными группами не наблюдаются.

Гипотеза 2. Суммарная и локальная спектральная мощность ЭЭГ-ритмов достоверно отличаются в группах Д и К в диапазоне медленных волн (многофакторный дисперсионный анализ, MANOVA). Альфа-мода в соответствующих возрастных группах у детей группы Д имеет более низкое значение, чем у детей группы К (программа Вильдавского).

Нуль-гипотеза: отсутствие достоверного эффекта влияния социального фактора на ЭЭГ-показатели. Значения альфа-моды не отличаются в группах Д и К. Гипотеза 3. Уровень тревожности (УТ), определяемый с помощью опросника Спилбергера–Ханина, достоверно выше в группах Д, что отражается в ЭЭГ-индексах тревожности, «связывании» медленных и быстрых волн (one way ANOVA, корреляционный анализ с использованием критерия Пирсона).

Нуль-гипотеза: статистически достоверные различия УТ между группами детей Д и К не наблюдаются; уровень тревожности не коррелирует с ЭЭГ-показателями; ЭЭГ-индексы не отражают уровень тревожности.

Рис. 1. Динамика изменения ритмов ЭЭГ в четырех возрастных группах. А – дельта 1/Temp/msohtmlclip1/01/clip_image011.jpg» />, тета , альфа 1 1/Temp/msohtmlclip1/01/clip_image013.jpg» />; Б – альфа 2 1/Temp/msohtmlclip1/01/clip_image015.jpg» />, бета 1 и бета 2 Особенности спектров мощности ЭЭГ при переживании чувства страха

Рубрика: Биология

Статья просмотрена: 6365 раз

Библиографическое описание:

Спиридонова, М. Д. Особенности спектров мощности ЭЭГ при переживании чувства страха / М. Д. Спиридонова. — Текст : непосредственный // Молодой ученый. — 2013. — № 8 (55). — С. 130-132. — URL: https://moluch.ru/archive/55/7538/ (дата обращения: 25.08.2020).

Страх — это неотъемлемая часть жизни каждого из нас. Страх является эмоцией большой силы, которая оказывает заметное влияние на восприятие, мышление и поведение индивида.

Нормальный страх имеет биологическую значимость, так как охраняет нас от многих опасностей, без чувства страха мы оказались бы легко уязвимы. Страх средней степени даже полезен, потому что готовит человека к столкновению с реальными опасностями и будущими ограничениями.

Высшая форма страха—ужас— дезорганизует поведение человека, сопровождается подавленным состоянием, депрессией и может перейти в фобию.

Читайте также:  Метаболические изменения миокарда что это такое

Вопрос о страхе оставался и остаётся в центре внимания практикующих аналитиков, которые за это время, не пришли к единому и окончательному решению этого вопроса, но сумели задать его таким образом, чтобы дать повод для дальнейшего размышления, а не поставить в нём точку.

Эмоциональные состояния человека находят отражение в электроэнцефалограмме головного мозга (ЭЭГ) скорее всего в изменении соотношения основных ритмов: дельта, тета, альфа и бета. Изменения ЭЭГ, характерные для эмоций, наиболее отчетливо возникают в лобных областях. По некоторым данным отрицательные эмоциональные состояния сопровождаются усилением альфа-активности в правом и усилением дельта-активности в левом полушарии [1].

Первые исследования электрической активности показали, что энцефалограмма головного мозга слагается из ритмических процессов. Ганс Бергер зарегистрировал в 1929 г [2] электроэнцефалограмму (ЭЭГ) человека, выделив альфа- и бета-ритмы. Во всех аналогичных работах обращалось внимание на доминирующие частоты, а малоамплитудные, как правило уходили из поля зрения исследователей. Среди всех ритмов ЭЭГ наиболее вероятно отражение знака эмоционального реагирования в альфа-, бета- и тета-ритме.

Что касается альфа-ритма (частота 8–13 Гц), есть мнение, что он генетически обусловлен и высоко индивидуализирован. В некоторых исследованиях было установлено, что альфа-ритм подавляется при эмоциональных переживаниях [3], а смена его на дельта-ритм отражает развитие стрессовой реакции. Другие данные свидетельствуют о специфичности отражения различных эмоций в мощности альфа-ритма. Например, такой результат был получен Костюниной и Куликовым, которые исследовали частотные характеристики спектров ЭЭГ при воображении испытуемым различных эмоций. Они получили следующие данные: при «страхе» и «горе» происходит подавление альфа-ритма, а при «радости» и «гневе» — возрастание [4]. Бета-ритм (частота 18–30 Гц) значительно усиливается при различных видах деятельности, связанных с активацией рабочих механизмов мозга. Есть мнение, что наиболее сильное увеличение мощности бета-ритма происходит при стрессе [5]. В работах Афтанаса с соавторами (Aftanas L. I., 2005) было показано, что некоторые особенно интенсивные эмоции — отвращение и страх — вызывают соответственно десинхронизацию в полосе альфа-2 (10–12 Гц) и бета-1 (12–18 Гц) ритмики и изолированно бета-1 ритмики в височно-теменных областях правого полушария. Видимо, таким образом отражается роль неспецифической активации в осуществлении эмоциональной реакции. Также было зафиксировано усиление бета-активности при предъявлении больным объекта фобии [6]. Тета-ритм (4–8 Гц). Вопрос о функциональном значении тета-ритма по настоящее время является предметом дискуссий. Однако существуют факты, позволяющие рассматривать этот ритм как показатель состояния психофизиологической направленности человека, индикатор эмоционального возбуждения, «ритм напряжения» [7]. Несмотря на недостаточность сведений о функциональном значении частоты тета-ритма, есть основания связывать рост этого показателя с процессами снижения торможения (или роста возбуждения). Тета-ритм особенным образом связан с процессом запоминания, так как одной из структур, генерирующих тета-ритм, является гиппокамп, участвующий в процессе формирования следов долговременной памяти. В гиппокампе тета-ритм имеет максимальную амплитуду и выраженность Фактически, в экспериментах по «обусловливанию страха» тета-активность (4–7 Гц) охватывает амигдалярно-гиппокампальные пути. Тем не менее, эта активность совпадает во времени исключительно с образованием условного рефлекса, а не при актуализации аффективной памяти или поведенческом проявлении страха. Дельта-ритм (0,5–4 Гц) проявляется отчетливо при тормозных состояниях коры и опухолях мозга. Существуют также данные об изменении гамма-ритма (30–90 Гц) под влиянием эмоциональных реакций. Так было показано асимметричное изменение в гамма-ритме при предъявлении положительной, отрицательной и нейтральной эмоциогенной стимуляции [6]. Мощность ритмики 30–50 Гц была максимальной в теменных отведениях при отрицательной стимуляции. Также отмечено усиление гамма-ритма в лобных отведениях при эмоциональной стимуляции безотносительно знака. Усиление гамма-ритма в левой лобной доли при предъявлении испытуемым объекта фобии [6]может объясняться общим изменением уровня активации, с дополнительным участием таламуса. Таким образом, по данным разных авторов эмоциональные реакции, состояния тревожности, напряженности и стресса находят свое отражение во всем частотном диапазоне ЭЭГ. Как отмечает Русалова (1998), можно говорить об определенных паттернах ритмики ЭЭГ, специфичных для различных эмоций.

На базе Удмуртского государственного университета были проведены исследования по изучению особенностей спектров мощности ЭЭГ при переживании чувства страха.

Цель данной работы изучение нейрофизиологических механизмов переживания чувства страха у лиц с различным уровнем страха.

Исследование выполнялось на 43 здоровых испытуемых студентах девушках в возрасте от 19 до 32 лет. Регистрация ЭЭГ при помощи Электроэнцефалографа — анализатора ЭЭГ — 21/26 «Энцефалан — 131 -03». В качестве показателя степени эмоционального напряжения использовали увеличение частоты сердечных сокращений. Для записи ЭКГ применяли 2-е стандартное отведение. Запись ЭЭГ, сопровождающаяся эмоциональным переживанием отрицательного характера, основанная на модели ожидания болевого раздражения электрическим током. Также запись ЭЭГ производилась в состоянии покоя (без болевых раздражений) до болевого раздражения током — фон и после болевого раздражения — последействие. А именно проводилась регистрация ЭЭГ по 21 отведению, запись производилась монополярно. Индифферентный электрод располагался на мочке уха. Регистрировали электрические потенциалы мышц, управляющие движениями глаз с помощью электроокулограммы (ЭОГ).

Такая методика была выбрана неслучайна. Боль — первый и важнейший из естественных активаторов страха. Любой объект, событие или ситуация, связанные с переживанием боли, могут стать условными стимулами, повторная встреча с которыми напоминает индивиду о прошлой ошибке и о переживании боли. О специфичности эксперимента испытуемому сообщалось непосредственно перед самим исследованием.

Результаты настоящего исследования позволили выявить различное отражение в ЭЭГ амплитудных характеристик при переживании негативных эмоций (страх, испуг, тревога). В классическом варианте в результате исследования у испытуемых вследствие переживания чувства страха должно наблюдаться торможение ЦНС (уменьшение мощности бета-ритма, увеличение мощности дельта-ритма).

В проведённом исследовании получилось, что испытуемые переживают различные эмоции. Картина распределения мощности не говорит об однозначном чувстве страха. В полученные результаты не указывают на процессы ярко вызывающие торможение ЦНС по сравнению с фоном и последействием (ПД) (см. рис.1).

Альфа-ритм традиционно рассматривался как ритм покоя, ритм «холостого хода» [3]. Однако, как показали многочисленные исследования, колебания мощности в α- полосе могут дать ценную информацию не только для оценки функционального состояния мозга, но и об изменении активности соответствующих мозговых образований, вовлечённых в определённую деятельность [8]. В получившихся результатах происходит уменьшение мощности α-ритма (α1,α2,α3) в пробах по сравнению с фоном, говорит о неспецифическом росте активации ЦНС. На ряду с этим происходит уменьшение Тета-ритма, что скорее всего также указывает на повышение уровня неспецифической активации ЦНС.

Увеличение Дельта-ритма говорит о развитии в ЦНС тормозных процессов, уменьшение мощности Бета-ритма такжесвидетельствует о торможении ЦНС. В итоге на фоне роста неспецифической активности ЦНС, активность коры снижается.

На основании данных о природе электрической активности мозга (а именно, в общих чертах: более быстрые волны (бета, альфа) генерируются в более поверхностных структурах мозга, более медленные (тета, дельта) в более глубоких, кроме того, известно, что кора принимает участие в модуляции всех корковых ритмов), можно сказать, что снижение мощности альфа ритма и рост мощности дельта ритма при переживании чувства страха отражает реакцию активации. Учитывая локализацию в центральных областях, эти изменения можно интерпретировать как усиление активности подкорковых лимбических структур Скорее всего в данном случае испытуемые испытывают страх, который побуждает к действию, т. к. происходит активация подкорковых структур и некоторые признаки торможения коры больших полушарий. В связи с этим страх, который испытывают испытуемые побуждает их на моторные действия, т. е. активация избегания из той ситуации, в которую они попали.

Страх диктует стратегию поведения в сложных опасных ситуациях. Он отражается в смене настроения и влияет на мотивацию и поведение, обеспечивает сохранение организма от потенциальной или реальной опасности.

1. Беленков Н. Ю., Вальдман А. В. Экспериментальная нейрофизиология эмоций. «Наука» Ленинград 1972.

2. Hinrichs H.,Mashleidt W. Basic emotions reflected in EEG- coherences / Int. J. Psychophysiology. 1992 v.13

3. Коган А. Б. Выражение процессов ВНД в электрических потенциалах коры мозга при свободном поведении животного// ЭЭГ исследования ВНД. М.: АН СССР, 1962.

4. Костюнина М. Б., Куликов М. А. Частотные характеристики спектров ЭЭГ при эмоциях // Журнал ВНД 1995. Т. 45. № 3

5. Ильюченок И. Р. Различия частотных характеристик ЭЭГ при восприятии положитетельно– эмоциональных, отрицательно-эмоциональных и нейтральных слов // Журнал ВНД. 1996 Т. 46. № 3

6. Хомская Е. Д., Батова Н. Я. Мозг и эмоции (нейропсихологическое исследование). М.: Изд-во МГУ, 1992.

7. Анохин П. К. Эмоции.—- БМЭ, 2-е изд., 1964, т. 35

8. Русалова М. Н., Костюнина М. Б. Отражение в межполушарном распределении частотно-амплитудных показателей ЭЭГ силы эмоционального переживания // Физиология человека. 2000. Т. 26. № 1.

Ссылка на основную публикацию
Что обозначает тяжело на сердце
Если тяжело на сердце, или Интуиция тела Человеческое тело — это удивительный механизм. И как любая машина, оно нуждается в...
Что можно использовать вместо смазки
Что можно использовать вместо смазки? Что использовать вместо смазки? Многие пары при прелюдии или занятии сексом используют разного рода лубриканты,...
Что можно кушать в первые дни после родов кормящей маме Что можно есть сразу после родов – питание р
Правильное и сбалансированное питание кормящей маме сразу после родов: что можно есть, а что нет, а какие продукты стоит исключить...
Что обязательно нужно сделать в церкви перед крещением ребёнка
Крещение ребенка Обряд крещение ребенка — таинство крещения является древним обрядом, уходящим своими корнями далеко в прошлое. Благодаря ему новорожденные...
Adblock detector